3.5.62 \(\int x^3 (d+e x^2) (a+b \cosh ^{-1}(c x)) \, dx\) [462]

Optimal. Leaf size=161 \[ -\frac {b \left (9 c^2 d+5 e\right ) x \sqrt {-1+c x} \sqrt {1+c x}}{96 c^5}-\frac {b \left (9 c^2 d+5 e\right ) x^3 \sqrt {-1+c x} \sqrt {1+c x}}{144 c^3}-\frac {b e x^5 \sqrt {-1+c x} \sqrt {1+c x}}{36 c}-\frac {b \left (9 c^2 d+5 e\right ) \cosh ^{-1}(c x)}{96 c^6}+\frac {1}{4} d x^4 \left (a+b \cosh ^{-1}(c x)\right )+\frac {1}{6} e x^6 \left (a+b \cosh ^{-1}(c x)\right ) \]

[Out]

-1/96*b*(9*c^2*d+5*e)*arccosh(c*x)/c^6+1/4*d*x^4*(a+b*arccosh(c*x))+1/6*e*x^6*(a+b*arccosh(c*x))-1/96*b*(9*c^2
*d+5*e)*x*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c^5-1/144*b*(9*c^2*d+5*e)*x^3*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c^3-1/36*b*e*x
^5*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 161, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.316, Rules used = {5956, 471, 102, 12, 92, 54} \begin {gather*} \frac {1}{4} d x^4 \left (a+b \cosh ^{-1}(c x)\right )+\frac {1}{6} e x^6 \left (a+b \cosh ^{-1}(c x)\right )-\frac {b \left (9 c^2 d+5 e\right ) \cosh ^{-1}(c x)}{96 c^6}-\frac {b x \sqrt {c x-1} \sqrt {c x+1} \left (9 c^2 d+5 e\right )}{96 c^5}-\frac {b x^3 \sqrt {c x-1} \sqrt {c x+1} \left (9 c^2 d+5 e\right )}{144 c^3}-\frac {b e x^5 \sqrt {c x-1} \sqrt {c x+1}}{36 c} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^3*(d + e*x^2)*(a + b*ArcCosh[c*x]),x]

[Out]

-1/96*(b*(9*c^2*d + 5*e)*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/c^5 - (b*(9*c^2*d + 5*e)*x^3*Sqrt[-1 + c*x]*Sqrt[1 +
c*x])/(144*c^3) - (b*e*x^5*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(36*c) - (b*(9*c^2*d + 5*e)*ArcCosh[c*x])/(96*c^6) +
(d*x^4*(a + b*ArcCosh[c*x]))/4 + (e*x^6*(a + b*ArcCosh[c*x]))/6

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 54

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ArcCosh[b*(x/a)]/b, x] /; FreeQ[{a,
 b, c, d}, x] && EqQ[a + c, 0] && EqQ[b - d, 0] && GtQ[a, 0]

Rule 92

Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(a + b*x
)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 3))), x] + Dist[1/(d*f*(n + p + 3)), Int[(c + d*x)^n*(e +
 f*x)^p*Simp[a^2*d*f*(n + p + 3) - b*(b*c*e + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f*(n + p + 4) - b*(d*e*(
n + 2) + c*f*(p + 2)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 3, 0]

Rule 102

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(a +
b*x)^(m - 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(m + n + p + 1))), x] + Dist[1/(d*f*(m + n + p + 1)), I
nt[(a + b*x)^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m - 1) + a*(d*e*(n + 1)
+ c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d,
e, f, n, p}, x] && GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegerQ[m]

Rule 471

Int[((e_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(non2_.))^(p_.)*((a2_) + (b2_.)*(x_)^(non2_.))^(p_.)*((c_) + (d_.)
*(x_)^(n_)), x_Symbol] :> Simp[d*(e*x)^(m + 1)*(a1 + b1*x^(n/2))^(p + 1)*((a2 + b2*x^(n/2))^(p + 1)/(b1*b2*e*(
m + n*(p + 1) + 1))), x] - Dist[(a1*a2*d*(m + 1) - b1*b2*c*(m + n*(p + 1) + 1))/(b1*b2*(m + n*(p + 1) + 1)), I
nt[(e*x)^m*(a1 + b1*x^(n/2))^p*(a2 + b2*x^(n/2))^p, x], x] /; FreeQ[{a1, b1, a2, b2, c, d, e, m, n, p}, x] &&
EqQ[non2, n/2] && EqQ[a2*b1 + a1*b2, 0] && NeQ[m + n*(p + 1) + 1, 0]

Rule 5956

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[d*(f*x)^(m
 + 1)*((a + b*ArcCosh[c*x])/(f*(m + 1))), x] + (-Dist[b*(c/(f*(m + 1)*(m + 3))), Int[(f*x)^(m + 1)*((d*(m + 3)
 + e*(m + 1)*x^2)/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])), x], x] + Simp[e*(f*x)^(m + 3)*((a + b*ArcCosh[c*x])/(f^3*(m
 + 3))), x]) /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[c^2*d + e, 0] && NeQ[m, -1] && NeQ[m, -3]

Rubi steps

\begin {align*} \int x^3 \left (d+e x^2\right ) \left (a+b \cosh ^{-1}(c x)\right ) \, dx &=\frac {1}{4} d x^4 \left (a+b \cosh ^{-1}(c x)\right )+\frac {1}{6} e x^6 \left (a+b \cosh ^{-1}(c x)\right )-\frac {1}{24} (b c) \int \frac {x^4 \left (6 d+4 e x^2\right )}{\sqrt {-1+c x} \sqrt {1+c x}} \, dx\\ &=-\frac {b e x^5 \sqrt {-1+c x} \sqrt {1+c x}}{36 c}+\frac {1}{4} d x^4 \left (a+b \cosh ^{-1}(c x)\right )+\frac {1}{6} e x^6 \left (a+b \cosh ^{-1}(c x)\right )-\frac {1}{36} \left (b c \left (9 d+\frac {5 e}{c^2}\right )\right ) \int \frac {x^4}{\sqrt {-1+c x} \sqrt {1+c x}} \, dx\\ &=-\frac {b \left (9 c^2 d+5 e\right ) x^3 \sqrt {-1+c x} \sqrt {1+c x}}{144 c^3}-\frac {b e x^5 \sqrt {-1+c x} \sqrt {1+c x}}{36 c}+\frac {1}{4} d x^4 \left (a+b \cosh ^{-1}(c x)\right )+\frac {1}{6} e x^6 \left (a+b \cosh ^{-1}(c x)\right )-\frac {\left (b \left (9 c^2 d+5 e\right )\right ) \int \frac {3 x^2}{\sqrt {-1+c x} \sqrt {1+c x}} \, dx}{144 c^3}\\ &=-\frac {b \left (9 c^2 d+5 e\right ) x^3 \sqrt {-1+c x} \sqrt {1+c x}}{144 c^3}-\frac {b e x^5 \sqrt {-1+c x} \sqrt {1+c x}}{36 c}+\frac {1}{4} d x^4 \left (a+b \cosh ^{-1}(c x)\right )+\frac {1}{6} e x^6 \left (a+b \cosh ^{-1}(c x)\right )-\frac {\left (b \left (9 c^2 d+5 e\right )\right ) \int \frac {x^2}{\sqrt {-1+c x} \sqrt {1+c x}} \, dx}{48 c^3}\\ &=-\frac {b \left (9 c^2 d+5 e\right ) x \sqrt {-1+c x} \sqrt {1+c x}}{96 c^5}-\frac {b \left (9 c^2 d+5 e\right ) x^3 \sqrt {-1+c x} \sqrt {1+c x}}{144 c^3}-\frac {b e x^5 \sqrt {-1+c x} \sqrt {1+c x}}{36 c}+\frac {1}{4} d x^4 \left (a+b \cosh ^{-1}(c x)\right )+\frac {1}{6} e x^6 \left (a+b \cosh ^{-1}(c x)\right )-\frac {\left (b \left (9 c^2 d+5 e\right )\right ) \int \frac {1}{\sqrt {-1+c x} \sqrt {1+c x}} \, dx}{96 c^5}\\ &=-\frac {b \left (9 c^2 d+5 e\right ) x \sqrt {-1+c x} \sqrt {1+c x}}{96 c^5}-\frac {b \left (9 c^2 d+5 e\right ) x^3 \sqrt {-1+c x} \sqrt {1+c x}}{144 c^3}-\frac {b e x^5 \sqrt {-1+c x} \sqrt {1+c x}}{36 c}-\frac {b \left (9 c^2 d+5 e\right ) \cosh ^{-1}(c x)}{96 c^6}+\frac {1}{4} d x^4 \left (a+b \cosh ^{-1}(c x)\right )+\frac {1}{6} e x^6 \left (a+b \cosh ^{-1}(c x)\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.12, size = 140, normalized size = 0.87 \begin {gather*} \frac {24 a c^6 x^4 \left (3 d+2 e x^2\right )-b c x \sqrt {-1+c x} \sqrt {1+c x} \left (15 e+c^2 \left (27 d+10 e x^2\right )+2 c^4 \left (9 d x^2+4 e x^4\right )\right )+24 b c^6 x^4 \left (3 d+2 e x^2\right ) \cosh ^{-1}(c x)-6 b \left (9 c^2 d+5 e\right ) \tanh ^{-1}\left (\sqrt {\frac {-1+c x}{1+c x}}\right )}{288 c^6} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[x^3*(d + e*x^2)*(a + b*ArcCosh[c*x]),x]

[Out]

(24*a*c^6*x^4*(3*d + 2*e*x^2) - b*c*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(15*e + c^2*(27*d + 10*e*x^2) + 2*c^4*(9*d*
x^2 + 4*e*x^4)) + 24*b*c^6*x^4*(3*d + 2*e*x^2)*ArcCosh[c*x] - 6*b*(9*c^2*d + 5*e)*ArcTanh[Sqrt[(-1 + c*x)/(1 +
 c*x)]])/(288*c^6)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(331\) vs. \(2(137)=274\).
time = 3.07, size = 332, normalized size = 2.06

method result size
derivativedivides \(\frac {\frac {a \left (\frac {1}{4} c^{6} d \,x^{4}+\frac {1}{6} c^{6} e \,x^{6}\right )}{c^{2}}-\frac {b \,c^{4} \mathrm {arccosh}\left (c x \right ) d^{3}}{12 e^{2}}+\frac {b \,\mathrm {arccosh}\left (c x \right ) d \,c^{4} x^{4}}{4}+\frac {b \,c^{4} e \,\mathrm {arccosh}\left (c x \right ) x^{6}}{6}+\frac {b \,c^{4} \sqrt {c x -1}\, \sqrt {c x +1}\, d^{3} \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )}{12 e^{2} \sqrt {c^{2} x^{2}-1}}-\frac {b \sqrt {c x -1}\, \sqrt {c x +1}\, d \,c^{3} x^{3}}{16}-\frac {b \,c^{3} e \sqrt {c x -1}\, \sqrt {c x +1}\, x^{5}}{36}-\frac {3 b c d x \sqrt {c x -1}\, \sqrt {c x +1}}{32}-\frac {5 b c e \sqrt {c x -1}\, \sqrt {c x +1}\, x^{3}}{144}-\frac {3 b \sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right ) d}{32 \sqrt {c^{2} x^{2}-1}}-\frac {5 b e x \sqrt {c x -1}\, \sqrt {c x +1}}{96 c}-\frac {5 b e \sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )}{96 c^{2} \sqrt {c^{2} x^{2}-1}}}{c^{4}}\) \(332\)
default \(\frac {\frac {a \left (\frac {1}{4} c^{6} d \,x^{4}+\frac {1}{6} c^{6} e \,x^{6}\right )}{c^{2}}-\frac {b \,c^{4} \mathrm {arccosh}\left (c x \right ) d^{3}}{12 e^{2}}+\frac {b \,\mathrm {arccosh}\left (c x \right ) d \,c^{4} x^{4}}{4}+\frac {b \,c^{4} e \,\mathrm {arccosh}\left (c x \right ) x^{6}}{6}+\frac {b \,c^{4} \sqrt {c x -1}\, \sqrt {c x +1}\, d^{3} \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )}{12 e^{2} \sqrt {c^{2} x^{2}-1}}-\frac {b \sqrt {c x -1}\, \sqrt {c x +1}\, d \,c^{3} x^{3}}{16}-\frac {b \,c^{3} e \sqrt {c x -1}\, \sqrt {c x +1}\, x^{5}}{36}-\frac {3 b c d x \sqrt {c x -1}\, \sqrt {c x +1}}{32}-\frac {5 b c e \sqrt {c x -1}\, \sqrt {c x +1}\, x^{3}}{144}-\frac {3 b \sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right ) d}{32 \sqrt {c^{2} x^{2}-1}}-\frac {5 b e x \sqrt {c x -1}\, \sqrt {c x +1}}{96 c}-\frac {5 b e \sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (c x +\sqrt {c^{2} x^{2}-1}\right )}{96 c^{2} \sqrt {c^{2} x^{2}-1}}}{c^{4}}\) \(332\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(e*x^2+d)*(a+b*arccosh(c*x)),x,method=_RETURNVERBOSE)

[Out]

1/c^4*(a/c^2*(1/4*c^6*d*x^4+1/6*c^6*e*x^6)-1/12*b*c^4/e^2*arccosh(c*x)*d^3+1/4*b*arccosh(c*x)*d*c^4*x^4+1/6*b*
c^4*e*arccosh(c*x)*x^6+1/12*b*c^4/e^2*(c*x-1)^(1/2)*(c*x+1)^(1/2)/(c^2*x^2-1)^(1/2)*d^3*ln(c*x+(c^2*x^2-1)^(1/
2))-1/16*b*(c*x-1)^(1/2)*(c*x+1)^(1/2)*d*c^3*x^3-1/36*b*c^3*e*(c*x-1)^(1/2)*(c*x+1)^(1/2)*x^5-3/32*b*c*d*x*(c*
x-1)^(1/2)*(c*x+1)^(1/2)-5/144*b*c*e*(c*x-1)^(1/2)*(c*x+1)^(1/2)*x^3-3/32*b*(c*x-1)^(1/2)*(c*x+1)^(1/2)/(c^2*x
^2-1)^(1/2)*ln(c*x+(c^2*x^2-1)^(1/2))*d-5/96*b*e*x*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c-5/96*b/c^2*e*(c*x-1)^(1/2)*(c
*x+1)^(1/2)/(c^2*x^2-1)^(1/2)*ln(c*x+(c^2*x^2-1)^(1/2)))

________________________________________________________________________________________

Maxima [A]
time = 0.26, size = 198, normalized size = 1.23 \begin {gather*} \frac {1}{6} \, a x^{6} e + \frac {1}{4} \, a d x^{4} + \frac {1}{32} \, {\left (8 \, x^{4} \operatorname {arcosh}\left (c x\right ) - {\left (\frac {2 \, \sqrt {c^{2} x^{2} - 1} x^{3}}{c^{2}} + \frac {3 \, \sqrt {c^{2} x^{2} - 1} x}{c^{4}} + \frac {3 \, \log \left (2 \, c^{2} x + 2 \, \sqrt {c^{2} x^{2} - 1} c\right )}{c^{5}}\right )} c\right )} b d + \frac {1}{288} \, {\left (48 \, x^{6} \operatorname {arcosh}\left (c x\right ) - {\left (\frac {8 \, \sqrt {c^{2} x^{2} - 1} x^{5}}{c^{2}} + \frac {10 \, \sqrt {c^{2} x^{2} - 1} x^{3}}{c^{4}} + \frac {15 \, \sqrt {c^{2} x^{2} - 1} x}{c^{6}} + \frac {15 \, \log \left (2 \, c^{2} x + 2 \, \sqrt {c^{2} x^{2} - 1} c\right )}{c^{7}}\right )} c\right )} b e \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(e*x^2+d)*(a+b*arccosh(c*x)),x, algorithm="maxima")

[Out]

1/6*a*x^6*e + 1/4*a*d*x^4 + 1/32*(8*x^4*arccosh(c*x) - (2*sqrt(c^2*x^2 - 1)*x^3/c^2 + 3*sqrt(c^2*x^2 - 1)*x/c^
4 + 3*log(2*c^2*x + 2*sqrt(c^2*x^2 - 1)*c)/c^5)*c)*b*d + 1/288*(48*x^6*arccosh(c*x) - (8*sqrt(c^2*x^2 - 1)*x^5
/c^2 + 10*sqrt(c^2*x^2 - 1)*x^3/c^4 + 15*sqrt(c^2*x^2 - 1)*x/c^6 + 15*log(2*c^2*x + 2*sqrt(c^2*x^2 - 1)*c)/c^7
)*c)*b*e

________________________________________________________________________________________

Fricas [A]
time = 0.37, size = 192, normalized size = 1.19 \begin {gather*} \frac {48 \, a c^{6} x^{6} \cosh \left (1\right ) + 48 \, a c^{6} x^{6} \sinh \left (1\right ) + 72 \, a c^{6} d x^{4} + 3 \, {\left (24 \, b c^{6} d x^{4} - 9 \, b c^{2} d + {\left (16 \, b c^{6} x^{6} - 5 \, b\right )} \cosh \left (1\right ) + {\left (16 \, b c^{6} x^{6} - 5 \, b\right )} \sinh \left (1\right )\right )} \log \left (c x + \sqrt {c^{2} x^{2} - 1}\right ) - {\left (18 \, b c^{5} d x^{3} + 27 \, b c^{3} d x + {\left (8 \, b c^{5} x^{5} + 10 \, b c^{3} x^{3} + 15 \, b c x\right )} \cosh \left (1\right ) + {\left (8 \, b c^{5} x^{5} + 10 \, b c^{3} x^{3} + 15 \, b c x\right )} \sinh \left (1\right )\right )} \sqrt {c^{2} x^{2} - 1}}{288 \, c^{6}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(e*x^2+d)*(a+b*arccosh(c*x)),x, algorithm="fricas")

[Out]

1/288*(48*a*c^6*x^6*cosh(1) + 48*a*c^6*x^6*sinh(1) + 72*a*c^6*d*x^4 + 3*(24*b*c^6*d*x^4 - 9*b*c^2*d + (16*b*c^
6*x^6 - 5*b)*cosh(1) + (16*b*c^6*x^6 - 5*b)*sinh(1))*log(c*x + sqrt(c^2*x^2 - 1)) - (18*b*c^5*d*x^3 + 27*b*c^3
*d*x + (8*b*c^5*x^5 + 10*b*c^3*x^3 + 15*b*c*x)*cosh(1) + (8*b*c^5*x^5 + 10*b*c^3*x^3 + 15*b*c*x)*sinh(1))*sqrt
(c^2*x^2 - 1))/c^6

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 0.51, size = 212, normalized size = 1.32 \begin {gather*} \begin {cases} \frac {a d x^{4}}{4} + \frac {a e x^{6}}{6} + \frac {b d x^{4} \operatorname {acosh}{\left (c x \right )}}{4} + \frac {b e x^{6} \operatorname {acosh}{\left (c x \right )}}{6} - \frac {b d x^{3} \sqrt {c^{2} x^{2} - 1}}{16 c} - \frac {b e x^{5} \sqrt {c^{2} x^{2} - 1}}{36 c} - \frac {3 b d x \sqrt {c^{2} x^{2} - 1}}{32 c^{3}} - \frac {5 b e x^{3} \sqrt {c^{2} x^{2} - 1}}{144 c^{3}} - \frac {3 b d \operatorname {acosh}{\left (c x \right )}}{32 c^{4}} - \frac {5 b e x \sqrt {c^{2} x^{2} - 1}}{96 c^{5}} - \frac {5 b e \operatorname {acosh}{\left (c x \right )}}{96 c^{6}} & \text {for}\: c \neq 0 \\\left (a + \frac {i \pi b}{2}\right ) \left (\frac {d x^{4}}{4} + \frac {e x^{6}}{6}\right ) & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(e*x**2+d)*(a+b*acosh(c*x)),x)

[Out]

Piecewise((a*d*x**4/4 + a*e*x**6/6 + b*d*x**4*acosh(c*x)/4 + b*e*x**6*acosh(c*x)/6 - b*d*x**3*sqrt(c**2*x**2 -
 1)/(16*c) - b*e*x**5*sqrt(c**2*x**2 - 1)/(36*c) - 3*b*d*x*sqrt(c**2*x**2 - 1)/(32*c**3) - 5*b*e*x**3*sqrt(c**
2*x**2 - 1)/(144*c**3) - 3*b*d*acosh(c*x)/(32*c**4) - 5*b*e*x*sqrt(c**2*x**2 - 1)/(96*c**5) - 5*b*e*acosh(c*x)
/(96*c**6), Ne(c, 0)), ((a + I*pi*b/2)*(d*x**4/4 + e*x**6/6), True))

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(e*x^2+d)*(a+b*arccosh(c*x)),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int x^3\,\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )\,\left (e\,x^2+d\right ) \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a + b*acosh(c*x))*(d + e*x^2),x)

[Out]

int(x^3*(a + b*acosh(c*x))*(d + e*x^2), x)

________________________________________________________________________________________